Considerations arising from a complementary learning systems perspective on hippocampus and neocortex.
نویسندگان
چکیده
We discuss a framework for the organization of learning systems in the mammalian brain, in which the hippocampus and related areas form a memory system complementary to learning mechanisms in neocortex and other areas. The hippocampal system stores new episodes and "replays" them to the neocortical system, interleaved with ongoing experience, allowing generalization as cortical memories form. The data to account for include: 1) neurophysiological findings concerning representations in hippocampal areas, 2) behavioral evidence demonstrating a spatial role for hippocampus, 3) and effects of surgical and pharmacological manipulations on neuronal firing in hippocampal regions in behaving animals. We hypothesize that the hippocampal memory system consists of three major modules: 1) an invertible encoder subsystem supported by the pathways between neocortex and entorhinal cortex, which provides a stable, compressed, invertible encoding in entorhinal cortex (EC) of cortical activity patterns, 2) a memory separation, storage, and retrieval subsystem, supported by pathways between EC, dentate gyrus and area CA3, including the CA3 recurrent collaterals, which facilitates encoding and storage in CA3 of individual EC patterns, and retrieval of those CA3 encodings, in a manner that minimizes interference, and 3) a memory decoding subsystem, supported by the Shaffer collaterals from area CA1 to area CA3 and the bi-directional pathways between EC and CA3, which provides the means by which a retrieved CA3 coding of an EC pattern can reinstate that pattern on EC. This model has shown that 1) there is a trade-off between the need for information-preserving, structure-extracting encoding of cortical traces and the need for effective storage and recall of arbitrary traces, 2) long-term depression of synaptic strength in the pathways subject to long-term potentiation is crucial in preserving information, 3) area CA1 must be able to exploit correlations in EC patterns in the direct perforant path synapses.
منابع مشابه
P15: Hippocampus-Neocortical Communication in Learning
The hippocampus is located in the medial temporal lobe and is a part of the forebrain. It plays a critical role in formation of declared memories. The hippocampus is banana­-shaped and communicates with all parts of neocortex. Reptiles and birds have structures like hippocampus that potentially serve as navigation functions. During the mammalian evolution, the neocortex has a large expansio...
متن کاملP2: Neocortex and Memory
The human prefrontal cortex differs from all other mammals: the seat of complex cognition, abstract thinking, planning and future forecasting, and behavioral inhibition. Using our prefrontal cortex is a significant energy drain on the body, so despite its impressive capabilities, it’s daily capacity is limited. Some researchers estimate a mere 2-3 hours per day of activity depletes the pr...
متن کاملHippocampal and neocortical contributions to memory: advances in the complementary learning systems framework.
The complementary learning systems framework provides a simple set of principles, derived from converging biological, psychological and computational constraints, for understanding the differential contributions of the neocortex and hippocampus to learning and memory. The central principles are that the neocortex has a low learning rate and uses overlapping distributed representations to extrac...
متن کاملGeneralization Through the Recurrent Interaction of Episodic Memories: A Model of the Hippocampal System
In this article, we present a perspective on the role of the hippocampal system in generalization, instantiated in a computational model called REMERGE (recurrency and episodic memory results in generalization). We expose a fundamental, but neglected, tension between prevailing computational theories that emphasize the function of the hippocampus in pattern separation (Marr, 1971; McClelland, M...
متن کاملGeneralization Through the Recurrent Interaction of Episodic Memories
In this article, we present a perspective on the role of the hippocampal system in generalization, instantiated in a computational model called REMERGE (recurrency and episodic memory results in generalization). We expose a fundamental, but neglected, tension between prevailing computational theories that emphasize the function of the hippocampus in pattern separation (Marr, 1971; McClelland, M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hippocampus
دوره 6 6 شماره
صفحات -
تاریخ انتشار 1996